extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3xC12).1C23 = S3xD4:S3 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8+ | (C3xC12).1C2^3 | 288,572 |
(C3xC12).2C23 = Dic6:3D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8+ | (C3xC12).2C2^3 | 288,573 |
(C3xC12).3C23 = D12:D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 24 | 8+ | (C3xC12).3C2^3 | 288,574 |
(C3xC12).4C23 = D12.D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8- | (C3xC12).4C2^3 | 288,575 |
(C3xC12).5C23 = S3xD4.S3 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8- | (C3xC12).5C2^3 | 288,576 |
(C3xC12).6C23 = Dic6.19D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8- | (C3xC12).6C2^3 | 288,577 |
(C3xC12).7C23 = Dic6:D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 24 | 8+ | (C3xC12).7C2^3 | 288,578 |
(C3xC12).8C23 = Dic6.D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8- | (C3xC12).8C2^3 | 288,579 |
(C3xC12).9C23 = D12:9D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8- | (C3xC12).9C2^3 | 288,580 |
(C3xC12).10C23 = D12.22D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8- | (C3xC12).10C2^3 | 288,581 |
(C3xC12).11C23 = D12.7D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8+ | (C3xC12).11C2^3 | 288,582 |
(C3xC12).12C23 = Dic6.20D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8+ | (C3xC12).12C2^3 | 288,583 |
(C3xC12).13C23 = D12.8D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8- | (C3xC12).13C2^3 | 288,584 |
(C3xC12).14C23 = D12:5D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 24 | 8+ | (C3xC12).14C2^3 | 288,585 |
(C3xC12).15C23 = S3xQ8:2S3 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8+ | (C3xC12).15C2^3 | 288,586 |
(C3xC12).16C23 = D12:6D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8+ | (C3xC12).16C2^3 | 288,587 |
(C3xC12).17C23 = D12.9D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8- | (C3xC12).17C2^3 | 288,588 |
(C3xC12).18C23 = D12.10D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8+ | (C3xC12).18C2^3 | 288,589 |
(C3xC12).19C23 = S3xC3:Q16 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 96 | 8- | (C3xC12).19C2^3 | 288,590 |
(C3xC12).20C23 = D12.11D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 96 | 8- | (C3xC12).20C2^3 | 288,591 |
(C3xC12).21C23 = Dic6.9D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8- | (C3xC12).21C2^3 | 288,592 |
(C3xC12).22C23 = Dic6.10D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8+ | (C3xC12).22C2^3 | 288,593 |
(C3xC12).23C23 = D12.24D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 96 | 8- | (C3xC12).23C2^3 | 288,594 |
(C3xC12).24C23 = D12.12D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 96 | 8- | (C3xC12).24C2^3 | 288,595 |
(C3xC12).25C23 = Dic6.22D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8+ | (C3xC12).25C2^3 | 288,596 |
(C3xC12).26C23 = D12.13D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8+ | (C3xC12).26C2^3 | 288,597 |
(C3xC12).27C23 = D12.14D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8+ | (C3xC12).27C2^3 | 288,598 |
(C3xC12).28C23 = D12.15D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8- | (C3xC12).28C2^3 | 288,599 |
(C3xC12).29C23 = Dic6.24D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8- | (C3xC12).29C2^3 | 288,957 |
(C3xC12).30C23 = S3xD4:2S3 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8- | (C3xC12).30C2^3 | 288,959 |
(C3xC12).31C23 = Dic6:12D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 24 | 8+ | (C3xC12).31C2^3 | 288,960 |
(C3xC12).32C23 = D12:12D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8- | (C3xC12).32C2^3 | 288,961 |
(C3xC12).33C23 = D12:13D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 24 | 8+ | (C3xC12).33C2^3 | 288,962 |
(C3xC12).34C23 = D12.25D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8- | (C3xC12).34C2^3 | 288,963 |
(C3xC12).35C23 = Dic6.26D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8+ | (C3xC12).35C2^3 | 288,964 |
(C3xC12).36C23 = S32xQ8 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8- | (C3xC12).36C2^3 | 288,965 |
(C3xC12).37C23 = S3xQ8:3S3 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8+ | (C3xC12).37C2^3 | 288,966 |
(C3xC12).38C23 = D12:15D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8- | (C3xC12).38C2^3 | 288,967 |
(C3xC12).39C23 = D12:16D6 | φ: C23/C1 → C23 ⊆ Aut C3xC12 | 48 | 8+ | (C3xC12).39C2^3 | 288,968 |
(C3xC12).40C23 = S3xC24:C2 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).40C2^3 | 288,440 |
(C3xC12).41C23 = S3xD24 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4+ | (C3xC12).41C2^3 | 288,441 |
(C3xC12).42C23 = C24:1D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4+ | (C3xC12).42C2^3 | 288,442 |
(C3xC12).43C23 = D24:S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).43C2^3 | 288,443 |
(C3xC12).44C23 = C24:9D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).44C2^3 | 288,444 |
(C3xC12).45C23 = C24:4D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).45C2^3 | 288,445 |
(C3xC12).46C23 = C24:6D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).46C2^3 | 288,446 |
(C3xC12).47C23 = S3xDic12 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | 4- | (C3xC12).47C2^3 | 288,447 |
(C3xC12).48C23 = C24.3D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | 4- | (C3xC12).48C2^3 | 288,448 |
(C3xC12).49C23 = Dic12:S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).49C2^3 | 288,449 |
(C3xC12).50C23 = C24.23D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).50C2^3 | 288,450 |
(C3xC12).51C23 = D6.1D12 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).51C2^3 | 288,454 |
(C3xC12).52C23 = D24:7S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | 4- | (C3xC12).52C2^3 | 288,455 |
(C3xC12).53C23 = D6.3D12 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4+ | (C3xC12).53C2^3 | 288,456 |
(C3xC12).54C23 = D12.2D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).54C2^3 | 288,457 |
(C3xC12).55C23 = D24:5S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).55C2^3 | 288,458 |
(C3xC12).56C23 = D12.4D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).56C2^3 | 288,459 |
(C3xC12).57C23 = C2xC32:2D8 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).57C2^3 | 288,469 |
(C3xC12).58C23 = D12.30D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).58C2^3 | 288,470 |
(C3xC12).59C23 = D12:20D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).59C2^3 | 288,471 |
(C3xC12).60C23 = C2xC3:D24 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).60C2^3 | 288,472 |
(C3xC12).61C23 = D12:18D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 24 | 4+ | (C3xC12).61C2^3 | 288,473 |
(C3xC12).62C23 = C2xDic6:S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).62C2^3 | 288,474 |
(C3xC12).63C23 = D12.32D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).63C2^3 | 288,475 |
(C3xC12).64C23 = C2xD12.S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).64C2^3 | 288,476 |
(C3xC12).65C23 = D12.27D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).65C2^3 | 288,477 |
(C3xC12).66C23 = D12.28D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).66C2^3 | 288,478 |
(C3xC12).67C23 = D12.29D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4- | (C3xC12).67C2^3 | 288,479 |
(C3xC12).68C23 = C2xC32:5SD16 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).68C2^3 | 288,480 |
(C3xC12).69C23 = Dic6.29D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).69C2^3 | 288,481 |
(C3xC12).70C23 = C2xC32:2Q16 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).70C2^3 | 288,482 |
(C3xC12).71C23 = C2xC32:3Q16 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).71C2^3 | 288,483 |
(C3xC12).72C23 = C3xS3xD8 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).72C2^3 | 288,681 |
(C3xC12).73C23 = C3xD8:S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).73C2^3 | 288,682 |
(C3xC12).74C23 = C3xD8:3S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).74C2^3 | 288,683 |
(C3xC12).75C23 = C3xS3xSD16 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).75C2^3 | 288,684 |
(C3xC12).76C23 = C3xQ8:3D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).76C2^3 | 288,685 |
(C3xC12).77C23 = C3xD4.D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).77C2^3 | 288,686 |
(C3xC12).78C23 = C3xQ8.7D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).78C2^3 | 288,687 |
(C3xC12).79C23 = C3xS3xQ16 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | 4 | (C3xC12).79C2^3 | 288,688 |
(C3xC12).80C23 = C3xQ16:S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | 4 | (C3xC12).80C2^3 | 288,689 |
(C3xC12).81C23 = C3xD24:C2 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | 4 | (C3xC12).81C2^3 | 288,690 |
(C3xC12).82C23 = C6xD4:S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).82C2^3 | 288,702 |
(C3xC12).83C23 = C3xD12:6C22 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 24 | 4 | (C3xC12).83C2^3 | 288,703 |
(C3xC12).84C23 = C6xD4.S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).84C2^3 | 288,704 |
(C3xC12).85C23 = C6xQ8:2S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).85C2^3 | 288,712 |
(C3xC12).86C23 = C3xQ8.11D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).86C2^3 | 288,713 |
(C3xC12).87C23 = C6xC3:Q16 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).87C2^3 | 288,714 |
(C3xC12).88C23 = C3xD4:D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).88C2^3 | 288,720 |
(C3xC12).89C23 = C3xQ8.13D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).89C2^3 | 288,721 |
(C3xC12).90C23 = C3xQ8.14D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).90C2^3 | 288,722 |
(C3xC12).91C23 = D8xC3:S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 72 | | (C3xC12).91C2^3 | 288,767 |
(C3xC12).92C23 = C24:8D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 72 | | (C3xC12).92C2^3 | 288,768 |
(C3xC12).93C23 = C24.26D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).93C2^3 | 288,769 |
(C3xC12).94C23 = SD16xC3:S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 72 | | (C3xC12).94C2^3 | 288,770 |
(C3xC12).95C23 = C24:7D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 72 | | (C3xC12).95C2^3 | 288,771 |
(C3xC12).96C23 = C24.32D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).96C2^3 | 288,772 |
(C3xC12).97C23 = C24.40D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).97C2^3 | 288,773 |
(C3xC12).98C23 = Q16xC3:S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).98C2^3 | 288,774 |
(C3xC12).99C23 = C24.35D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).99C2^3 | 288,775 |
(C3xC12).100C23 = C24.28D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).100C2^3 | 288,776 |
(C3xC12).101C23 = C2xC32:7D8 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).101C2^3 | 288,788 |
(C3xC12).102C23 = C62.131D4 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 72 | | (C3xC12).102C2^3 | 288,789 |
(C3xC12).103C23 = C2xC32:9SD16 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).103C2^3 | 288,790 |
(C3xC12).104C23 = C2xC32:11SD16 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).104C2^3 | 288,798 |
(C3xC12).105C23 = C62.134D4 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).105C2^3 | 288,799 |
(C3xC12).106C23 = C2xC32:7Q16 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 288 | | (C3xC12).106C2^3 | 288,800 |
(C3xC12).107C23 = C62.73D4 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 72 | | (C3xC12).107C2^3 | 288,806 |
(C3xC12).108C23 = C62.74D4 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).108C2^3 | 288,807 |
(C3xC12).109C23 = C62.75D4 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).109C2^3 | 288,808 |
(C3xC12).110C23 = C2xS3xDic6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).110C2^3 | 288,942 |
(C3xC12).111C23 = C2xD12:5S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).111C2^3 | 288,943 |
(C3xC12).112C23 = C2xD12:S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).112C2^3 | 288,944 |
(C3xC12).113C23 = D12.33D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).113C2^3 | 288,945 |
(C3xC12).114C23 = D12.34D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4- | (C3xC12).114C2^3 | 288,946 |
(C3xC12).115C23 = C2xDic3.D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).115C2^3 | 288,947 |
(C3xC12).116C23 = C2xD6.6D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).116C2^3 | 288,949 |
(C3xC12).117C23 = S3xC4oD12 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).117C2^3 | 288,953 |
(C3xC12).118C23 = D12:23D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 24 | 4 | (C3xC12).118C2^3 | 288,954 |
(C3xC12).119C23 = D12:24D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).119C2^3 | 288,955 |
(C3xC12).120C23 = D12:27D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 24 | 4+ | (C3xC12).120C2^3 | 288,956 |
(C3xC12).121C23 = C6xD4:2S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).121C2^3 | 288,993 |
(C3xC12).122C23 = C3xD4:6D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 24 | 4 | (C3xC12).122C2^3 | 288,994 |
(C3xC12).123C23 = S3xC6xQ8 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).123C2^3 | 288,995 |
(C3xC12).124C23 = C6xQ8:3S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).124C2^3 | 288,996 |
(C3xC12).125C23 = C3xQ8.15D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).125C2^3 | 288,997 |
(C3xC12).126C23 = C3xS3xC4oD4 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).126C2^3 | 288,998 |
(C3xC12).127C23 = C3xD4oD12 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).127C2^3 | 288,999 |
(C3xC12).128C23 = C3xQ8oD12 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).128C2^3 | 288,1000 |
(C3xC12).129C23 = C2xC12.D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).129C2^3 | 288,1008 |
(C3xC12).130C23 = C32:82+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 72 | | (C3xC12).130C2^3 | 288,1009 |
(C3xC12).131C23 = C2xQ8xC3:S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).131C2^3 | 288,1010 |
(C3xC12).132C23 = C2xC12.26D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).132C2^3 | 288,1011 |
(C3xC12).133C23 = C32:72- 1+4 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).133C2^3 | 288,1012 |
(C3xC12).134C23 = C4oD4xC3:S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 72 | | (C3xC12).134C2^3 | 288,1013 |
(C3xC12).135C23 = S32xC8 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).135C2^3 | 288,437 |
(C3xC12).136C23 = S3xC8:S3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).136C2^3 | 288,438 |
(C3xC12).137C23 = C24:D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).137C2^3 | 288,439 |
(C3xC12).138C23 = C24.63D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).138C2^3 | 288,451 |
(C3xC12).139C23 = C24.64D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).139C2^3 | 288,452 |
(C3xC12).140C23 = C24.D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).140C2^3 | 288,453 |
(C3xC12).141C23 = C2xS3xC3:C8 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).141C2^3 | 288,460 |
(C3xC12).142C23 = S3xC4.Dic3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).142C2^3 | 288,461 |
(C3xC12).143C23 = D12.2Dic3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).143C2^3 | 288,462 |
(C3xC12).144C23 = D12.Dic3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).144C2^3 | 288,463 |
(C3xC12).145C23 = C2xC12.29D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).145C2^3 | 288,464 |
(C3xC12).146C23 = C3:C8.22D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).146C2^3 | 288,465 |
(C3xC12).147C23 = C3:C8:20D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 24 | 4 | (C3xC12).147C2^3 | 288,466 |
(C3xC12).148C23 = C2xD6.Dic3 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).148C2^3 | 288,467 |
(C3xC12).149C23 = C2xC12.31D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).149C2^3 | 288,468 |
(C3xC12).150C23 = C2xD6.D6 | φ: C23/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).150C2^3 | 288,948 |
(C3xC12).151C23 = C2xC24:2S3 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).151C2^3 | 288,759 |
(C3xC12).152C23 = C2xC32:5D8 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).152C2^3 | 288,760 |
(C3xC12).153C23 = C24.78D6 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).153C2^3 | 288,761 |
(C3xC12).154C23 = C2xC32:5Q16 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 288 | | (C3xC12).154C2^3 | 288,762 |
(C3xC12).155C23 = C24:3D6 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 72 | | (C3xC12).155C2^3 | 288,765 |
(C3xC12).156C23 = C24.5D6 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).156C2^3 | 288,766 |
(C3xC12).157C23 = C22xC32:4Q8 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 288 | | (C3xC12).157C2^3 | 288,1003 |
(C3xC12).158C23 = C62.154C23 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 72 | | (C3xC12).158C2^3 | 288,1014 |
(C3xC12).159C23 = C32:92- 1+4 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).159C2^3 | 288,1015 |
(C3xC12).160C23 = C6xC24:C2 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 96 | | (C3xC12).160C2^3 | 288,673 |
(C3xC12).161C23 = C6xD24 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 96 | | (C3xC12).161C2^3 | 288,674 |
(C3xC12).162C23 = C3xC4oD24 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 48 | 2 | (C3xC12).162C2^3 | 288,675 |
(C3xC12).163C23 = C6xDic12 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 96 | | (C3xC12).163C2^3 | 288,676 |
(C3xC12).164C23 = C3xC8:D6 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).164C2^3 | 288,679 |
(C3xC12).165C23 = C3xC8.D6 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).165C2^3 | 288,680 |
(C3xC12).166C23 = C2xC6xDic6 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 96 | | (C3xC12).166C2^3 | 288,988 |
(C3xC12).167C23 = S3xC2xC24 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 96 | | (C3xC12).167C2^3 | 288,670 |
(C3xC12).168C23 = C6xC8:S3 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 96 | | (C3xC12).168C2^3 | 288,671 |
(C3xC12).169C23 = C3xC8oD12 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 48 | 2 | (C3xC12).169C2^3 | 288,672 |
(C3xC12).170C23 = C3xS3xM4(2) | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).170C2^3 | 288,677 |
(C3xC12).171C23 = C3xD12.C4 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).171C2^3 | 288,678 |
(C3xC12).172C23 = C2xC6xC3:C8 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 96 | | (C3xC12).172C2^3 | 288,691 |
(C3xC12).173C23 = C6xC4.Dic3 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 48 | | (C3xC12).173C2^3 | 288,692 |
(C3xC12).174C23 = C3xD4.Dic3 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).174C2^3 | 288,719 |
(C3xC12).175C23 = C2xC8xC3:S3 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).175C2^3 | 288,756 |
(C3xC12).176C23 = C2xC24:S3 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).176C2^3 | 288,757 |
(C3xC12).177C23 = C24.95D6 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).177C2^3 | 288,758 |
(C3xC12).178C23 = M4(2)xC3:S3 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 72 | | (C3xC12).178C2^3 | 288,763 |
(C3xC12).179C23 = C24.47D6 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).179C2^3 | 288,764 |
(C3xC12).180C23 = C22xC32:4C8 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 288 | | (C3xC12).180C2^3 | 288,777 |
(C3xC12).181C23 = C2xC12.58D6 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).181C2^3 | 288,778 |
(C3xC12).182C23 = D4.(C3:Dic3) | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).182C2^3 | 288,805 |
(C3xC12).183C23 = C6xC4oD12 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 48 | | (C3xC12).183C2^3 | 288,991 |
(C3xC12).184C23 = C2xC12.59D6 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).184C2^3 | 288,1006 |
(C3xC12).185C23 = D8xC3xC6 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).185C2^3 | 288,829 |
(C3xC12).186C23 = SD16xC3xC6 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).186C2^3 | 288,830 |
(C3xC12).187C23 = Q16xC3xC6 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 288 | | (C3xC12).187C2^3 | 288,831 |
(C3xC12).188C23 = C32xC4oD8 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).188C2^3 | 288,832 |
(C3xC12).189C23 = C32xC8:C22 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 72 | | (C3xC12).189C2^3 | 288,833 |
(C3xC12).190C23 = C32xC8.C22 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).190C2^3 | 288,834 |
(C3xC12).191C23 = Q8xC62 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 288 | | (C3xC12).191C2^3 | 288,1020 |
(C3xC12).192C23 = C32x2+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 72 | | (C3xC12).192C2^3 | 288,1022 |
(C3xC12).193C23 = C32x2- 1+4 | φ: C23/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).193C2^3 | 288,1023 |
(C3xC12).194C23 = M4(2)xC3xC6 | central extension (φ=1) | 144 | | (C3xC12).194C2^3 | 288,827 |
(C3xC12).195C23 = C32xC8oD4 | central extension (φ=1) | 144 | | (C3xC12).195C2^3 | 288,828 |
(C3xC12).196C23 = C4oD4xC3xC6 | central extension (φ=1) | 144 | | (C3xC12).196C2^3 | 288,1021 |